On Link-based Similarity Join
نویسندگان
چکیده
Graphs can be found in applications like social networks, bibliographic networks, and biological databases. Understanding the relationship, or links, among graph nodes enables applications such as link prediction, recommendation, and spam detection. In this paper, we propose link-based similarity join (LS-join), which extends the similarity join operator to link-based measures. Given two sets of nodes in a graph, the LS-join returns all pairs of nodes that are highly similar to each other, with respect to an e-function. The e-function generalizes common measures like Personalized PageRank (PPR) and SimRank (SR). We study an efficient LS-join algorithm on a large graph. We further improve our solutions for PPR and SR, which involve expensive randomwalk operations. We validate our solutions by performing extensive experiments on three real graph datasets.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملEfficient Similarity Join of Large Sets of Spatio-temporal Trajectories
We address the problem of performing efficient similarity join for large sets of moving objects trajectories. Unlike previous approaches which use a dedicated index in a transformed space, our premise is that in many applications of location-based services, the trajectories are already indexed in their native space, in order to facilitate the processing of common spatio-temporal queries, e.g., ...
متن کاملContinuous Similarity Computation over Streaming Graphs
Large network analysis is a very important topic in data mining. A significant body of work in the area studies the problem of node similarity. One way to express node similarity is to associate with each node the set of 1-hop neighbors and compute the Jaccard similarity between these sets. This information can be used subsequently for more complex operations like link prediction, clustering or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 4 شماره
صفحات -
تاریخ انتشار 2011